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Abstract--The orientation and magnitude of the finite strain, built up in simple shear, and the orientation and 
rotation of material lines eventually parallel to the long principal axis of the strain ellipse have simple 
relationships with the shear strain. Off-axis Mohr circles for stretch and reciprocal stretch allow convenient proof 
of such relationships, whilst some of these are not often seen in existing structural literature. In particular, it is 
noted that the shear strain in ideal simple shear equals the difference of ihe principal stretches. 

INTRODUCTION 

IN studies concerned with geometrical aspects of defor- 
mation in shear zones it is often convenient to describe 
the deformation in terms of ideal simple shear. This 
description is justified in many cases, because there are 
many natural shear zones which presumably developed 
between rigid-wall rock blocks with zero or near-zero 
volume change. Under these circumstances the shear 
zone deformation has to be close to simple shear. 

The concept of ideal simple shear has the advantage 
that relationships between finite strain and simple shear 
geometry are relatively easy. Nevertheless, when asked 
informally, most structural geologists will probably ad- 
mit that teaching the basic aspects of shear zone defor- 
mation usually requires some concise inspection of clas- 
sic handbooks before lecture hour starts. This short note 
aims to focus on these basic aspects using off-axis Mohr 
circles for stretch. Symmetric and off-axis Mohr circles 
of this type have been introduced to geology by Choi & 
Hsii (1971) and Robin (1977), respectively, and by 
several other workers (e.g. Means 1982, 1983, De Paor 
1983, Passchier 1986). Below I use off-axis Mohr circle 
constructions for stretch and reciprocal stretch to pres- 
ent alternative proof, for the case of ideal simple shear, 
of some simple relationships between shear strain, the 
orientation and magnitude of the finite strain, and the 
initial orientation and rotation of a material line eventu- 
ally parallel to the long axis of the strain ellipse. A 
number of these relationships have been documented in 
the literature (Ramsay 1967, Ramsay & Huber 1983). In 
addition to demonstrating these familiar relationships, 
inspection of the Mohr circle for stretch reveals some 
surprisingly simple and useful relationships that have 
been entirely overlooked in existing analyses. 

Besides the likelihood that principles of a Mohr circle 
construction are more easily memorized than formulas, 
a field geologist working on natural shear zones may 
take profit from this approach for the purpose of rough 

calculations on the outcrop, just by sketching the perti- 
nent Mohr circle constructions (Means, personal com- 
munication). 

MOHR CIRCLES FOR STRETCH AND 
RECIPROCAL STRETCH 

A general finite deformation, whether it accumulated 
coaxially or non-coaxially, is conveniently described by 
a forward (Lagrangian) position gradients tensor (F) 
relating the position (x) of any material point in the 
deformed state to coordinates (X) in the undeformed 
state by: 

X i = F i j X  j. 

Conversely, the same deformation can be described by a 
backward (Eulerian) position gradients tensor (H) relat- 
ing material coordinates (X) to spatial coordinates (x) in 
the deformed state: 

Xi = Hqxj 

where the tensor Hq is the inverse of Fq. 
Consider an ideal dextral simple shear in real space 

as illustrated in Fig. 1 (a), with the clockwise shear strain 
7 = tan ~p taken positive. Let 0 be the initial orientation 
of a material line, eventually oriented parallel to the 
long principal axis (X) of the strain ellipse at an angle 
0' to the flow plane, and w = 0 - 0' the rotation of 
that material line. Such an ideal simple shear with the 
flow plane parallel to the one-direction can be described 
by: 

or by: 

,Xa, 
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Fig. 1. (a) Geometry of ideal simple shear, with initial and final 
orientations of material lines parallel to the longest principal axis of the 
strain ellipse. Note that initial and final orientations of a material line 
parallel to X are symmetric about the 45 ° direction. For further 
explanation see text. (b) Mohr circle of the Second Kind representing 
the simple shear deformation in (a). This circle, defined by points (0, 1) 
and (y, I) spanning the diameter, overlaps with the deformation in 

geographic space. 

Means (1983) has shown that for any tensor Aii with 
components 

:1 
points (a, - c )  and (d, b) in Mohr space specify a 
diameter of a corresponding Mohr circle such that the 
Mohr circle is fully determined. Such a Mohr circle is 
currently known as a Mohr circle of the First Kind, as 
opposed to Mohr circles of the Second Kind (De Paor 
& Means 1984), defined in a similar fashion by points 
(c, a) and (b, d). The two kinds of Mohr circles differ 
in their sign conventions, and both kinds may have 
advantages and disadvantages in specific applications. 
A marked property of Mohr circles of the Second Kind 
is that they can be brought into coincidence with geo- 
graphic space as shown in Fig. l(b).  As this feature 
seems particularly convenient for present purposes, all 
constructions below employ Mohr circles of the Second 
Kind. 

Mohr circle representations of the position gradients 
tensors F 0 and H 0 in equations ( la  & b) are shown in Fig. 
2. Note that polar coordinates of points on the F Mohr 
circle (Fig. 2, right half) represent the stretches and 
rotations of material lines in real space (e.g. Means 
1982). In addition, initial angles between two material 
lines appear as double angles measured along the circle. 
Material lines parallel to the finite strain axes X and Z 
plot at 1 + ex and l + e~ along a line from the origin 

through the centre of the Mohr circle. The double angle 
20 represents twice the initial angle, with respect to the 
shear plane, of a material line eventually parallel to X. 
In the Mohr circle for H (Fig. 2, left half), polar 
coordinates of points on the circle represent the recipro- 
cal stretches and rotations of material lines in real space, 
whilst angles between two material lines plotted as 
double angles in Mohr space now refer to angles in the 
deformed state. Note that the two Mohr circles are each 
others mirror image across the vertical axis, but that the 
significance of the various points indicated on the two 
Mohr circles are different. In particular, points rep- 
resenting the long and short axes of the strain ellipse 
swap when comparing the one with the other circle 
whilst, in the Mohr circle for F, point B representing a 
material line initially perpendicular to the flow plane, 
plots at B' in the Mohr circle for H. 

SIMPLE SHEAR AND FINITE STRAIN 

Below we first consider mutual relationships between 
angles 0, 0' and to. From the mirror symmetry of the 
Mohr circles for F and H it is immediately obvious that 
the angle OMA in the Mohr circle for F should equal 
20'. As 20 + 20' = 180 °, this implies that 

0 + 0' = 90 ° (2) 

for any value of the shear strain. This is a rather 
surprising result, though consistent with analyses of 
simple shear such as, e.g. in Ramsay & Huber  (1983). 
Careful examination of their fig. 2.10 on page 23 shows 
that the two angles should indeed be complementary. A 
notable consequence of equation (2) is that the initial 
and final orientations of material lines parallel to the 
longest principal axis of the strain ellipse (Fig. 1 a) are 
symmetrically disposed about the 45 ° direction. 

A second relationship follows from inspection of rec- 
tangular triangle OMA in the Mohr circle for F which 
demonstrates that to + 20' = 90 ° or 

2 0 ' = 9 0  ° - t o  or t o = 9 0  ° - 2 0 ' .  (3a) 

With 0 + 0' = 90 ° it follows also that 

2 0 = 9 0  ° + t o  or t o = 2 0 - 9 0  ° . (3b) 

For practical purposes it may be convenient to illustrate 
such relationships in the Mohr circle for F only, without 
using the Mohr circle for H. This can be done by drawing 
auxiliary lines ZP and ZA  as shown in Fig. 3. As arc AX 
equals 20, angle MZA  spanning the same arc should be 
0, and because angle MZP equals w, angle A ZP  must be 
equal to 0'. From triangle ZAP it follows that angle ZAP 
should be 900-0  ' such that, in the isosceles triangle 
ZMA,  0 = 9 0 ° -0  ', and angle ZMA must be equal to 
20'. 

We now consider relationships between angles 0, 0' 
and to, and the value of the shear strain 7. By definition, 
y = tan ~p in which ~p is the rotation of a material line 
initially perpendicular to the flow plane. This material 
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Fig. 2. Mohr circle representations for F (right-hand half) and H (left-hand half) for an ideal simple shear as shown in 
Fig. 1. 

line is represented in the Mohr circle for F by point B 
(Fig. 2). Note that this point B is the pole on the Mohr 
circle (Allison 1984). With OA being unit length, the 
diameter BA of the circle must be equal to 7, which is 
also inherent to the procedure to plot Mohr circles from 
tensor components as laid out by Means (1983). It 
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Fig. 3. Mohr circle representation for F, with auxiliary lines ZP and 
ZA to visualize the orientation 0' of the longest principal axis of strain. 

follows that the radius of the circle should be ~/2. 
Therefore ,  from rectangular triangle OMA: 

tan to = 7/2. (4) 

This is obviously consistent with the somewhat compli- 
cated calculations on the basis of the geometry of simple 
shear in real space as, e.g. in Ramsay & Huber  (1983, 
pp. 17 and 27). From the same triangle, it also follows 
that 

tan 20' = 2/~, (5a) 

which only differs in sign from Ramsay & Huber  (1983, 
p. 27) due to the present sign convention with clockwise 
shear strains positive. With 20 + 20' = 180 ° and bearing 
in mind from trigonometry that tan (180 ° - a)  = - t a n  a,  
it follows that 

tan 20 = -2 /y .  (5b) 

We have noted that the diameters of the Mohr circles 
for F and H equal the shear strain 7. This diameter is also 
equal to the difference between the largest and smallest 
principal stretches I + ex and 1 + ez ,  such that 

~, = (1 + ex) - (1 + ez) = ex - ez (6) 

and, with (4) 

tan to = (e~ - ez)/2. (7) 

The result under (6), though surprising, is entirely 
consistent with conventional analyses of simple shear as 
for example laid out in Ramsay (1967), where close 
inspection of his fig. 3.21 (p. 85) indeed indicates that the 
difference between the principal axes of strain is equal to 
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the shear strain. To my knowledge, the only recent 
reference to this property of simple shear has been made 
by Treagus (1981) where she draws attention to an 
extremely elegant simple shear construction set out by 
Thomson & Tait (1867). With reference to Durelli et al. 
(1958), De Paor (1983) has identified the circle of the 
Thomson & Tait (1867) construction as a dyadic circle 
concentric with the Mohr circle for F. It will be clear that 
some of the geometrical properties shown above also 
emerge from this dyadic circle. 

Now to calculate the principal axes (stretches), 
inspect rectangular triangle OMA. Note that OM = 

[(1 + ex) + (1 + ez)] and AM = y/2. With Pythagoras" 
rule and multiplying by 4 it follows that 

((1 + e~) + (1 + eD)-' = 4 + y~. (8) 

With (6) this equation is easily solved for either ( 1 + e~) 
or (1 + e~) to produce the well known expressions for the 
principal axes as a function of shear strain (Ramsay 
1967, Ramsay & Huber  1983): 

( l + e , . ) :  or (1 +e=)2=½[y:+2+7(y2+4)t/:]. 

CONCLUSION 

The Mohr circles for stretch and reciprocal stretch 
allow convenient proofs of a number of simple relation- 
ships between orientation and magnitude of the strain 
built up in simple shear, and the initial orientation and 
rotation of material lines that become parallel to the 
longest principal axis. Inspection of the Mohr circles for 
stretch also allows one to assess some relationships 
commonly not documented in algebraic representations 
of simple shear. 
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